Table of Contents
ToggleMagnetic Hysteresis Loop

The Magnetic Hysteresis loop above shows the behavior of a ferromagnetic core graphically as the relationship between B and H is non-linear. Starting with an unmagnetised core both B and H will be at zero, point 0 on the magnetisation curve.
If the magnetisation current, i is increased in a positive direction to some value the magnetic field strength H increases linearly with i and the flux density B will also increase as shown by the curve from point 0 to point a as it heads towards saturation.
Now if the magnetising current in the coil is reduced to zero, the magnetic field circulating around the core also reduces to zero. However, the coils magnetic flux will not reach zero due to the residual magnetism present within the core and this is shown on the curve from point a to point b.
To reduce the flux density at point b to zero we need to reverse the current flowing through the coil. The magnetising force which must be applied to null the residual flux density is called a “Coercive Force”.
An increase in this reverse current causes the core to be magnetised in the opposite direction and increasing this magnetisation current further will cause the core to reach its saturation point but in the opposite direction, point d on the curve.
This point is symmetrical to point b. If the magnetising current is reduced again to zero the residual magnetism present in the core will be equal to the previous value but in reverse at point e.
Again reversing the magnetising current flowing through the coil this time into a positive direction will cause the magnetic flux to reach zero, point f on the curve and as before increasing the magnetisation current further in a positive direction will cause the core to reach saturation at point a.
Then the B-H curve follows the path of a-b-c-d-e-f-a as the magnetising current flowing through the coil alternates between a positive and negative value such as the cycle of an AC voltage. This path is called a Magnetic Hysteresis Loop.
Magnetic Hysteresis Loops for Soft and Hard Materials

Magnetic Hysteresis results in the dissipation of wasted energy in the form of heat with the energy wasted being in proportion to the area of the magnetic hysteresis loop.
What is Ferromagnetic material?
Ferromagnetic materials are strongly attracted by a magnetic force. The elements iron (Fe), nickel (Ni), cobalt (Co) and gadolinium (Gd) are such materials.
The reasons these metals are strongly attracted are because their individual atoms have a slightly higher degree of magnetism due to their configuration of electrons, their atoms readily line up in the same magnetic direction and the magnetic domains or groups of atoms line up more readily.
Alloys of iron, nickel, cobalt, gadolinium and certain ceramic materials can become “permanent” magnets, such that they retain their magnetism for a long time.